

Comparative Packaging Study

Michele Perchonok and David Antonini NASA Advanced Food Technology Johnson Space Center, Houston

PURPOSE

- · Evaluate new high barrier food packaging films for use on long duration space missions
- · Determine the effects of:
- High temperatures during heat sealing
- Stress cracking from folds in the films caused by vacuum packing
- Relative humidity during storage

Deliverables

- Quantitatively evaluate each packaging material after final processing for oxygen and water vapor transmission through analysis of ingredients susceptible to moisture uptake and lipid oxidation.
- Qualitatively determine changes in food product attributes through sensory evaluation methods after storage in 3 different packaging films.
- Evaluate the potential of each packaging material based on qualitative and quantitative

Food Sample Selection

- · Dry cereal is prone to reduced quality from absorption of water vapor
- · Cottonseed oil is susceptible to lipid oxidation in the presence of oxygen.
- · Peanuts produce a rancidity marker, hexanal, which can be quantified by analysis of the gas in the headspace of the

Permeation Rate Comparison

- The table below shows the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for each packaging material
- Glass and aluminum have the best available barrier properties for food packaging purposes. Temperature and relative humidity may have an effect on the permeation rate of a packaging film.

MATERIAL	OTR @ 73°F & 100% RH (grams/100in²/day)	WVTR @ 100°F & 100% RH (grams/100in ² /day	
Combitherm	5.405	0.352	
Technipaq	<0.0003	<0.0003	
Tolas	<0.0030	<0.0003	
Glass	<0.0003	<0.0003	
Aluminum	<0.0003	<0.0003	

Che	erios	
Tolas (AIOX Coated Film)	Technipaq Film	
Peanuts in Combitherm	Oil in Combitherm	

Packaging Material Information

Combitherm Film

- Structure: Nylon/EVOH/Nylon/High Ethylene Vinyl Acetate Polyethylene/LLDPE
- PROS: Lightweight and transparent. Microwaveable and can be incinerated.
- · CONS: Requires an overwrap film due to poor barrier properties. Overwrap causes a major increase in mass for food system.

Technipaq Film

- · Structure: A quadlaminate film. PET/Polyethylene/Aluminum/Ionomer
- · PROS: Best barrier properties available in
- · CONS: Film cannot be incinerated or microwaved due to aluminum layer. Film is not clear to allow for food identification.

Tolas Film

- · Structure: A PET film coated with a thin layer of aluminum oxide.
- PROS: Very lightweight with excellent barrier properties. Transparent film. Microwaveable and can be incinerated.
- · CONS: Stress cracking caused by wrinkles during vacuum packing may reduce the barrier properties.